
INTRODUCTORY NOTES ON PARTIAL ISOMORPHISMS

RODRIGO A. FREIRE

Throughout this text, only relational signatures are considered, and all
signatures are assumed to be finite. We do not need to think of a signature
as a linguistic object, but as a similarity type of structures. We assume
that the arities of the predicate symbols in a signature are positive natural
numbers, and that these symbols are ordered in a sequence. A structure for
a given signature is a domain equiped with a sequence of predicates that
match the signature’s sequence. In contexts in which we are considering
only one fixed signature we will, in general, not be explicit about it. In
those contexts, if the fixed signature is denoted by Σ, then all structures are
tacitly assumed to be Σ-structures, and all formulas are assumed to be in the
first-order language derived from Σ, unless otherwise stated. All structures
are assumed to be non-empty. We assume that all signatures contain one
predicate constant, the equality symbol =.

A finite sequence of elements of a set X with length k is a function from
s : {1, ..., k} → X. If s and t are finite sequences, then the concatenation of
s and t is denoted by sˆt. If a is an element of a set X then a is identified
with the sequence of elements of X with length 1 which maps 1 to a. We
say that the finite sequence s with length k is contained in the string t with
length l if there is a strictly increasing function i : {1, ..., k} → {1, ..., l},
such that s = t ◦ i. If s is a finite sequence we say that s is a tuple; if s is a
tuple with length k, then we say that s is a k-tuple.

Definition 1. We say that f is a p-partial isomorphism between (A, a)
and (B, b) iff A and B are structures, a and b are n-tuples in A and B,
respectively, p ∈ ω, f is a bijection, dom(f) is contained in A, range(f) is
contained in B, dom(f) is finite, the elements in the n-tuple a are in dom(f),
the elements in the n-tuple b are in range(f), f maps the n-tuple a to the
n-tuple b, and either p = 0 and f is an isomorphism from the substructure
whose domain is dom(f) onto the substructure whose domain is range(f),
or p > 0 and the back-and-forth property holds:

(1) (Forth) If a is in A then there are a b in B and a function g such
that g is an extension of f and g : (A, aˆa) ≈p−1 (B, bˆb).

(2) (Back) If b is in B then there are a a in A and a function g such that
g is an extension of f and g : (A, aˆa) ≈p−1 (B, bˆb).

We denote the above defined predicate by

f : (A, a) ≈p (B, b).
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Definition 2. We say that (A, a) and (B, b) are p-equivalent iff there is an
f such that f : (A, a) ≈p (B, b). We denote this relation by

(A, a) ≈p (B, b).

Remark 3. If f is a p-partial isomorphism between (A, a) and (B, b), and
a′ is a tuple in A that is contained in a, then f is a p-partial isomorphism
between (A, a′) and (B, b′), where b′ is the image of a′ under f . If g is a
restriction of f , a′ is contained in a and the elements in a′ are in dom(g),
then g is a p-partial isomorphism between (A, a′) and (B, b′), where b′ is
the image of a′ under f . In particular, if (A, a) ≈p (B, b), then the empty
function is a p-partial isomorphism between (A, ∅) and (B, ∅). Furthermore,
if there is a p-partial isomorphism between (A, a) and (B, b), then there is
one whose domain is constituted exactly by the elements in the n-tuple a,
and that maps a to b.

Remark 4. For each p ∈ ω, if f is a p + 1-partial isomorphism between
(A, a) and (B, b), then f is a p-partial isomorphism between (A, a) and
(B, b). Therefore, if f is a p-partial isomorphism between (A, a) and (B, b),
and q < p, then f is a q-partial isomorphism between (A, a) and (B, b).

Definition 5. The quantificational rank of a first order formula ϕ is defined,
by induction, as the greatest number of nested quantifiers in ϕ: If ϕ is atomic
then its quantificational rank is 0; if ϕ is a conjunction (disjunction) then
its quantificational rank is the greatest between the quantificational ranks
of its conjuncts (disjuncts); if ϕ is ¬ψ then its quantificational rank is the
quantificational rank of ψ; if ϕ is ∃xψ then its quantificational rank is the
quantificational rank of ψ plus 1.

Theorem 6. (Fräıssé Theorem, first part) If (A, a) ≈p (B, b), a and b are
n-tuples, and ϕ is a formula of quantificational rank ≤ p with free variables
among x1,..., xn, then A |= ϕ[a] iff B |= ϕ[b].

Proof. Let f denote a p-partial isomorphism between (A, a) and (B, b).
If ϕ is atomic, then, since f is an isomorphism between a (finite) sub-

structure that contains a and a (finite) substructure that contains b,

A |= ϕ[a] iff B |= ϕ[b].

If ϕ is a conjunction, or a disjunction, or a negation, then the equivalence
A |= ϕ[a] iff B |= ϕ[b] follows from the induction hypothesis.

Now, suppose that ϕ is ∃xn+1ψ, that the quantificational rank of ϕ is at
most p, and that A |= ϕ[a]. Therefore, there is an element a in A such that
A |= ψ[aˆa]. Since f is a p-partial isomorphism, and p > 0, it follows that
there is an element b in B and a function g that is an extension of f , and
such that

g : (A, aˆa) ≈p−1 (B, bˆb).
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By induction hypothesis, if φ is a formula with quantificational rank ≤ p−1
with free variables among x1,...,xn+1, then

A |= φ[aˆa] iff B |= φ[bˆb].

Since the quantificational rank of ψ is at most p− 1, it follows that

B |= ψ[bˆb], and hence B |= ϕ[b].

The converse implication follows from the symmetry of the relation of p-
equivalence with respect to (A, a) and (B, b). �

Remark 7. The proof given above shows that, given a natural number p, for
each formula ϕ with quantificational rank p, every p-partial isomorphism
between (A, a) and (B, b) is a 0-partial isomorphism between (A′, a) and
(B′, b), where A′ is the expansion of A with the predicate ϕA, and similarly
for B′.

Let us define, by induction in q, a family of sets (Γ(i, q))i∈ω:
If q = 0, then consider all the finitely many atomic formulas in the vari-

ables x1,..., xi. Denote this plurality of atomic formulas by φ1,..., φm. Let
Γ(i, 0) be the set of all conjunctions of the form φ∗1 ∧ ... ∧ φ∗m, where φ∗j is
either φj or its negation, ¬φj . This is the set of all state descriptions based
on φ1,..., φm.

If q = r + 1, then the family of sets (Γ(i, q))i∈ω is defined in terms of the
family (Γ(i, r))i∈ω. Denote the formulas in Γ(i+1, r) by φ1,..., φk. Consider
the formulas ∃xi+1φ1,..., ∃xi+1φk, and let Γ(i, r + 1) be the set of all state
descriptions based on ∃xi+1φ1,..., ∃xi+1φk, that is, the set of all conjunctions
of k conjuncts, such that the jth conjunct is either ∃xi+1φj or its negation,
¬∃xi+1φj .

Remark 8. The sets in the family (Γ(i, q))i,q∈ω are finite, and their cardinali-
ties can be calculated with the help of the following equation: |Γ(i, q+1)| =
2|Γ(i+1,q)|. The free variables of the formulas in Γ(i, q) are x1,..., xi, and
their quantificational rank is q. No variable in a formular in Γ(i, q) occurs
both free and bound. The disjunction of the formulas in Γ(i, q) is valid, and
any two of them are incompatible. Therefore, for all numbers n and p, all
pairs (A, a), where A is a structure, and a is an n-tuple in A, there is one,
and only one, formula ψ ∈ Γ(n, p) such that A |= ψ[a]. We say that the
pair (A, a) is in the state described by ψ of quantificational rank p, in n free
variables.

Theorem 9. (Fräıssé Theorem, second part) For all numbers n and p, all
pairs (A, a) and (B, b), where A and B are structures, and a and b are
n-tuples in A and B, respectively, if there is a formula ψ ∈ Γ(n, p) such
that A |= ψ[a] and B |= ψ[b], then (A, a) ≈p (B, b). On the other hand, if

(A, a) ≈p (B, b), then there is a formula ψ ∈ Γ(n, p) such that A |= ψ[a] and

B |= ψ[b].
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Proof. The first statement is proved by induction in p. Assume that there
is a formula ψ ∈ Γ(n, p) such that

A |= ψ[a] and B |= ψ[b].1

If p = 0, then the pairs (A, a) and (B, b) are in the same atomic state,
in n free variables, that is, the pairs (A, a) and (B, b) bear the same atomic
relations. This means that the function f whose domain is constituted by
the elements in a, which maps a to b is an isomorphism of the corresponding
substructures2 and

(A, a) ≈0 (B, b).

If p = q+1, then, by remark 3, it is necessary and sufficient to show that the
function f whose domain is constituted by the elements in a, which maps
a to b is a p-partial isomorphism between (A, a) and (B, b). It is enough to
prove the back-and-forth property:

(1) If a is in A, then there is a unique formula φ ∈ Γ(n+ 1, q) such that

A |= φ[aˆa].

Therefore, A |= ∃xn+1φ[a]. Each state description in Γ(n, p) contains
an occurrence of either ∃xn+1φ or ¬∃xn+1φ. If ψ is the unique state
description in Γ(n, p) such that A |= ψ[a], then, since

A |= ∃xn+1φ[a],

the formula ∃xn+1φ cannot occur negated in ψ. By hypothesis, we
also have that B |= ψ[b], and hence that

B |= ∃xn+1φ[b].

This means that there is a b in B such that

B |= φ[bˆb].

We showed that for some φ ∈ Γ(n+ 1, q), both

A |= φ[aˆa] and B |= φ[bˆb].

By induction hypothesis,

(A, aˆa) ≈q (B, bˆb),

which means that there is a function g that maps aˆa to bˆb, and
such that g is a q-partial isomorphism. It follows at once that g is
an extension of f , and this item of the back-and-forth property is
proved.

(2) If b is in B, then the obvious changes in the above reasoning show that
there is an element a in A and a q-partial isomorphism g between
(A, aˆa) and (B, bˆb). It follows at once that g is an extension of f ,
and this item of the back-and-forth property is also proved.

1In this case we say that the pairs (A, a) and (B, b) are in the same state of quantifica-
tional rank p, in n free variables.

2Notice that f is one-to-one, therefore a bijection, because xi = xj , for i, j ≤ n, are

atomic formulas, and a and b share exactly the same atomic relations.



INTRODUCTORY NOTES ON PARTIAL ISOMORPHISMS 5

The second statement follows from the first part of Fräıssé’s Theorem: if
(A, a) ≈p (B, b), then for any formula ϕ with quantificational rank p and free

variables x1,..., xn (such as the formulas in Γ(n, p)), A |= ϕ[a] iff B |= ϕ[b].
�

Corollary 10. The structures A and B are elementarily equivalent iff for
all p ∈ ω, the empty function is a p-partial isomorphism between (A, ∅) and
(B, ∅).

Theorem 11. (Hintikka Normal Form Theorem) If ϕ is a formula with
quantificational rank at most p, and free variables among x1,..., xn, then ϕ
is equivalent to a disjunction of formulas in Γ(n, p). Given the formula ϕ,
one such disjunction can be effectively found.

Proof. Under the conditions of the statement, if ψ ∈ Γ(n, p) then

|= ∀x(ψ → ϕ) or |= ∀x(ψ → ¬ϕ),

and both can occur in case ψ is unsatisfiable. In fact, suppose that it is
not the case that |= ∀x(ψ → ϕ) or |= ∀x(ψ → ¬ϕ). Therefore, there are
structures A and B, and n-tuples a in A and b in B, such that

A |= ¬(ψ → ϕ)[a] and B |= ¬(ψ → ¬ϕ)[b].

Therefore, A |= ψ[a] and A |= ¬ϕ[a], and B |= ψ[b] and B |= ϕ[b].
Since

A |= ψ[a] and B |= ψ[b],

it follows from Fräıssé’s Theorem, second part, that

(A, a) ≈p (B, b).

However, A |= ¬ϕ[a], B |= ϕ[b] and ϕ is a formula with quantificational
rank at most p. This is impossible, by Fräıssé’s Theorem, first part, and it
follows that

|= ∀x(ψ → ϕ) or |= ∀x(ψ → ¬ϕ).

In order to find Hintikka’s normal form, we can apply the following pro-
cedure: For each ψ ∈ Γ(n, p),

search for a proof of ∀x(ψ → ϕ) and for a proof of ∀x(ψ → ¬ϕ).

By the above argument, at least one of them must be found, and when one
of them is found stop searching. If the proof found is a proof of ∀x(ψ → ϕ)
then keep this ψ; if the proof found is a proof of ∀x(ψ → ¬ϕ), then discard
ψ. In the end, we are left with a set of ψ′s (the ones not discarded). Make
the disjuction of this set, and call this disjunction φ.

Now, we can prove that

|= ∀x(ϕ↔ φ).
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In fact, since each disjunct in φ implies ϕ, it follows that φ implies ϕ. On
the other hand, suppose that there are a structure A and an n-tuple a in A,
such that

A |= ϕ[a] and A |= ¬φ[a].

Since the disjunction of all formulas in Γ(n, p) is valid, there is a ψ ∈ Γ(n, p),
which was discarded in the above procedure, and such that A |= ψ[a]. How-
ever, since ψ was discarded, a proof of

∀x(ψ → ¬ϕ)

was found, and this formula is valid. Therefore, A |= ¬ϕ[a], which is a
contradiction.

�

Remark 12. If the satisfiability of the formulas ψ ∈ Γ(n, p) were decidable,
then the validity of formulas with quantificational rank at most p, and free
variables x1,..., xn, would be decidable also. In fact, since the disjunction of
all formulas in Γ(n, p) is valid, a disjunction φ of some formulas in Γ(n, p)
is valid iff the remaining state descriptions in Γ(n, p) that are not disjuncts
of φ are unsatisfiable.

Definition 13. An extensional function O with predicate arguments in Σ
(extensional function for short) of type → n is a function that assigns, for
each structure A, an n-ary predicate OA. We say that O is Lωω-definable
iff there is a formula ϕ in Lωω such that (i) x1,..., xn are the free variables
of ϕ, and (ii) for each structure A and each n-tuple a in A,

OA(a) iff A |= ϕ[a].

Definition 14. An extensional function O of type → n is preserved under
p-equivalence iff for all structures A and B, all n-tuples a in A and b in B,

If (A, a) ≈p (B, b) then (OA(a) iff OB(b))

Theorem 15. (Fräıssé) An extensional function O of type→ n, with n > 0,
is Lωω-definable iff there is a p ∈ ω such that O is preserved under p-
equivalence. More precisely, if p ∈ ω, then an extensional function O of
type → n is Lωω-definable by a formula ϕ with quantificational rank p and
free variables x1,..., xn iff O is preserved under p-equivalence.

Proof. Let us prove the second, and more precise assertion. Assume that O
is preserved under p-equivalence, for some p ∈ ω. Consider the set

∆p(O) =
{
ψ ∈ Γ(n, p) : ∃(C, c); (C |= ψ[c]) ∧OC(c)

}
.

It follows that O is defined by the disjunction of ∆p(O), which is a formula
ϕ in Lωω with quantificational rank p. Indeed, given a structure A and an
n-tuple a in A, if A |= ϕ[a] then, for some ψ ∈ ∆p(O),

A |= ψ[a].
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However, since ψ ∈ ∆p(O), there is a couple (C, c) such that

C |= ψ[c] and OC(c).

Since A |= ψ[a] and C |= ψ[c], it follows from Fräıssé’s Theorem that

(C, c) ≈p (A, a).

Therefore, OA(a), because O is preserved under p-equivalence and we al-
ready have that OC(c).

Now, assume that O is defined by a formula in Lωω, which is denoted by
ϕ and has quantificational rank p, for some p ∈ ω. If (A, a) ≈p (B, b), then,
since ϕ and has quantificational rank p,

A |= ϕ[a] iff B |= ϕ[b],

which means that OA(a) iff OB(b), and O is preserved under p-equivalence.
�


